
Unit -2

Types of Representation:

There are two ways:

1. Packed Storage Representation:

The representation in which components of a vectors are

packed in to storage sequentially without regard for placing

in each component at the beginning of an address word of

storage. This method saves the physical memory but it

causes the several disadvantages like:

 Access to a component is much more complex

 Implementation of a accessing formula for packed causes the

overall cost

Types of Representation:

2. Unpacked Storage Representation:

Each component is stored beginning at the boundary of an

addressable unit of storage.

Multi-Dimensional Array:

Multi-Dimensional Arrays:
A vector is a 1-D array; a matrix is composed of rows & columns of components is
a two dimensional array. A three dimensional array is composed of planes of
rows and columns.
Specifications and syntax:
A multidimensional array differs from a vector in its attributes only in that a
subscript range for each dimension is required as in the Pascal declaration
B: array [1…10,-5...5] of real;

 M-D Array Representation:

 Descriptor

 VO
 L B(=1)

 E

 First Row

 Virtual Origin

Lower bound subscript1

Upper bound subscript 1

 Size of component

 Storage Representation for

Components

Free Space

 UB1=(3)

LB2(=-1)

UB2(=2) Upper bound subscript 2

Lower bound subscript2

M[1,-1]

M[1,0]

M[1,1]

M[2,-1]

M[2,0]

M[2,1]

M[3,-1]

M[3,0]

M[3,1]

Second Row

Third Row

Multi-Dimensional Array:

Location of element a[I,J] can be obtained by this :

l-value(A[I,J])= x + (I-LB1)* S + (J-LB2) * E

Where

x = base address

S = length of row = (UB2-LB2+1)*E

LB1= Lower bound on first subscript

LB2, UB2 =Lower and Upper bounds on second
subscript or

 l-value(A[I,J])= VO + I * S + J * E

Associative Arrays

 An associative array (also associative container, map,

mapping, hash, dictionary, finite map, and in query-

processing an index or index file) is an abstract data

type composed of a collection of unique keys and a

collection of values, where each key is associated with one

value (or set of values). The operation of finding the value

associated with a key is called a lookup or indexing, and

this is the most important operation supported by an

associative array. The relationship between a key and its

value is sometimes called a mapping.

http://en.wikipedia.org/wiki/Abstract_data_type
http://en.wikipedia.org/wiki/Abstract_data_type
http://en.wikipedia.org/wiki/Collection_(computing)
http://en.wikipedia.org/wiki/Map_(mathematics)

Associative Arrays

The operations that are usually defined for an associative array

are:

 Add: Bind a new key to a new value

 Reassign: Bind an old key to a new value

 Remove: Unbind a key from a value and remove the key from

the key set

 Lookup: Find the value (if any) that is bound to a key

These entries can be thought of as two records in a database

table:

Name Telephone

XYZ 01-1234-56
 ABC 02-4321-56

Example of Associative Arrays

One can think of a telephone book as an example of an

associative array, where names are the keys and phone

numbers are the values. Using the usual array-like notation,

we might write

 telephone['ada'] = '01-1234-56'

telephone['charles'] = '02-4321-56'

and so on. These entries can be thought of as two records in a

database table

To retrieve the element from the associative array, we use a

similar notation i.e.

 x = telephone['ada']

 y = telephone['charles']

http://en.wikipedia.org/wiki/Telephone_directory

